
ar
X

iv
:1

81
0.

04
61

0v
1

 [
cs

.P
F]

 1
0

O
ct

 2
01

8

uops.info: Characterizing Latency, Throughput, and Port Usage

of Instructions on Intel Microarchitectures

Andreas Abel and Jan Reineke

Department of Computer Science

Saarland University

Saarbrücken, Germany

{abel, reineke}@cs.uni-saarland.de

Abstract

Modern microarchitectures are some of the world’s most

complex man-made systems. As a consequence, it is increas-

ingly difficult to predict, explain, let alone optimize the per-

formance of software running on such microarchitectures. As

a basis for performance predictions and optimizations, we

would need faithful models of their behavior, which are, un-

fortunately, seldomly available.

In this paper, we present the design and implementation of

a tool to construct faithful models of the latency, throughput,

and port usage of x86 instructions. To this end, we first dis-

cuss common notions of instruction throughput and port us-

age, and introduce a more precise definition of latency that,

in contrast to previous definitions, considers dependencies

between different pairs of input and output operands. We

then develop novel algorithms to infer the latency, through-

put, and port usage based on automatically-generated mi-

crobenchmarks that are more accurate and precise than ex-

isting work.

To facilitate the rapid construction of optimizing compilers

and tools for performance prediction, the output of our tool

is provided in a machine-readable format. We provide experi-

mental results for processors of all generations of Intel’s Core

architecture, i.e., from Nehalem to Coffee Lake, and discuss

various cases where the output of our tool differs consider-

ably from prior work.

1. Introduction

Developing tools that predict, explain, or even optimize the

performance of software is challenging due to the complexity

of today’s microarchitectures. Unfortunately, this challenge

is exacerbated by the lack of a precise documentation of their

behavior. While the high-level structure of modern microar-

chitectures is well-known and stable across multiple gener-

ations, lower-level aspects may differ considerably between

microarchitecture generations and are generally not as well

documented. An important aspect with a relatively strong in-

fluence on performance is how ISA instructions decompose

into micro-operations (µops); which ports these µops may be

executed on; and what their latencies are.

Knowledge of this aspect is required, for instance, to build

precise performance-analysis tools like CQA [10], Kern-

craft [18], or llvm-mca [8]. It is also useful when config-

uring cycle-accurate simulators like Zesto [27], gem5 [9],

McSim+ [5] or ZSim [31]. Optimizing compilers, such as

LLVM [26] and GCC [1], can profit from detailed instruction

characterizations to generate efficient code for a specific mi-

croarchitecture. Similarly, such knowledge is helpful when

manually fine-tuning a piece of code for a specific processor.

Unfortunately, information about the port usage, latency,

and throughput of individual instructions at the required level

of detail is hard to come by. Intel’s processor manuals [23]

only contain latency and throughput data for a number of

“commonly-used instructions.” They do not contain informa-

tion on the decomposition of individual instructions into µops,

nor do they state the execution ports that these µops can use.

The only way to obtain accurate instruction characteriza-

tions for many recent microarchitectures is thus to perform

measurements using microbenchmarks. Such measurements

are aided by the availability of performance counters that pro-

vide precise information on the number of elapsed cycles and

the cumulative port usage of instruction sequences. A rel-

atively large body of work [3, 4, 6, 11, 12, 19, 28, 29, 30, 32,

33, 34, 35] uses microbenchmarks to infer properties of the

memory hierarchy. Another line of work [7, 15, 16, 25] uses

automatically generated microbenchmarks to characterize the

energy consumption of microprocessors. Comparably little

work [2,10,14,17] is targeted at instruction characterizations.

Furthermore, existing approaches, such as [14], require sig-

nificant manual effort to create the microbenchmarks and to

interpret the results of the experiments. Furthermore, its re-

sults are not always accurate and precise, as we will show

later.

In this paper, we develop a new approach that can automat-

ically generate microbenchmarks in order to characterize the

latency, throughput, and port usage of instructions on Intel

Core CPUs in an accurate and precise manner.

Before describing our algorithms and their implementa-

tion, we first discuss common notions of instruction latency,

throughput, and port usage. For latency, we propose a new

definition that, in contrast to previous definitions, consid-

http://arxiv.org/abs/1810.04610v1

ers dependencies between different pairs of input and output

operands, which enables more accurate performance predic-

tions.

We then develop algorithms that generate assembler code

for microbenchmarks to measure the properties of interest for

most x86 instructions. Our algorithms take into account ex-

plicit and implicit dependencies, such as, e.g., dependencies

on status flags. Therefore, they require detailed information

on the x86 instruction set. We create a machine-readable

XML representation of the x86 instruction set that contains

all the information needed for automatically generating as-

sembler code for each instruction. The relevant information

is automatically extracted from the configuration files of In-

tel’s x86 Encoder Decoder (XED) [21] library.

We have implemented our algorithms in a tool that we have

successfully applied to all microarchitecture generations of

Intel’s Core architecture, i.e., from Nehalem to Coffee Lake.

In addition to running the generated microbenchmarks on the

actual hardware, we have also implemented a variant of our

tool that runs them on top of Intel IACA [20]. IACA is a

closed-source tool published by Intel that can statically an-

alyze the performance of loop kernels on different Intel mi-

croarchitectures. It is, however, updated only infrequently,

and its results are not always accurate, as we will show later.

The output of our tool is available in a machine-readable

format, so that it can be easily used to implement, e.g., simu-

lators, performance prediction tools, or optimizing compilers.

Finally, we discuss several interesting insights obtained by

comparing the results from our measurements with previously

published data. Our precise latency data, for example, uncov-

ered previously undocumented differences between different

microarchitectures. It also explains discrepancies between

previously published information. Apart from that, we un-

covered various errors in IACA, and inaccuracies in the man-

uals.

2. Related Work

In this section, we will describe existing sources of detailed

instruction data for Intel microarchitectures. We will first con-

sider information provided by Intel directly, and then look at

measurement-based approaches.

2.1. Information provided by Intel

Intel’s Optimization Reference Manual [23] contains a set of

tables with latency and throughput data for “commonly-used

instructions.” The tables are not complete; for some instruc-

tions, only throughput information is provided. The manual

does not contain detailed information about the port usage of

individual instructions.

IACA [20] is a closed-source tool developed by Intel that

can statically analyze the performance of loop kernels on sev-

eral microarchitectures (which can be different from the sys-

tem that the tool is run on). The tool generates a report which

includes throughput and port usage data of the analyzed loop

kernel. By considering loop kernels with only one instruction,

it is possible to obtain the throughput of the corresponding in-

struction. However, it is, in general, not possible to determine

the port bindings of the individual µops this way. Early ver-

sions of IACA were also able to analyze the latency of loop

kernels; however, support for this was dropped in version 2.2.

IACA is updated only infrequently. Support for the Broad-

well microarchitecture (which was released in 2014), for ex-

ample, was added only in 2017. There is currently no support

for the two most recent microarchitectures, Kaby Lake and

Coffee Lake, which were released in 2016 and 2017, respec-

tively.

The instruction scheduling components of LLVM [26] for

the Sandy Bridge, Haswell, Broadwell, and Skylake microar-

chitecture were recently updated and extended with latency

and port usage information that was, according to the commit

message (https://reviews.llvm.org/rL307529), pro-

vided by the architects of these microarchitectures. The re-

sulting models are available in the LLVM repository.

2.2. Measurement-based Approaches

Agner Fog [14] provides lists of instruction latency, through-

put, and port usage data for different x86 microarchitectures.

The data in the lists is not complete; e.g., latency data for in-

structions with memory operands is often missing. The port

usage information is sometimes inaccurate or imprecise; rea-

sons for this are discussed in Section 5.1. The data is obtained

using a set of test scripts developed by the author. The output

from these scripts has to be interpreted manually to build the

instruction tables.

CQA [10] is a performance analysis tool for x86 code that

requires latency, throughput, and port usage data to build

a performance model of a microarchitecture. It includes

a microbenchmark module that supports measuring the la-

tency and throughput of many x86 instructions. For non-

supported instructions, the authors use Agner Fog’s instruc-

tion tables [14]. The paper briefly mentions that the module

can also measure the number of µops that are dispatched to

execution ports using performance counters, but no further

details are provided.

Granlund [17] presents measured latency and throughput

data for different x86 processors. He considers only a rela-

tively small subset of the x86 instruction set.

AIDA64 [13] is a commercial, closed-source system infor-

mation tool that can perform throughput and latency measure-

ments of x86 instructions. Measurement results for many pro-

cessors obtained using AIDA64 are available at [2].

3. Background

3.1. Pipeline of Intel Core CPUs

Figure 1 shows the general structure of the pipeline of Intel

Core CPUs. The pipeline consists of the front end, the execu-

tion engine (back end), and the memory subsystem.

2

https://reviews.llvm.org/rL307529

F
ro

n
t

E
n
d

E
xe

c
u
ti
o
n

E
n
g
in

e
M

e
m

o
ry

Instruction Cache

Instruction Fetch & Decode

Reorder Buffer

Scheduler

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

A
L
U

,
V

-M
U

L
,

..
.

A
L
U

,
V

-A
D

D
,

..
.

L
o
a
d
,

A
G

U

L
o
a
d
,

A
G

U

S
to

re
D

a
ta

A
L
U

,
J
M

P
,

..
.

L1 Data Cache

L2 Cache

4–6 µops

µops

µop µop µop µop µop µop

Figure 1: Pipeline of Intel Core CPUs (simplified).

The front end is responsible for fetching instructions from

the memory, and for decoding them into a sequence of micro-

operations (µops).

The reorder buffer stores the the µops in order until they

are retired. It is also responsible for register allocation (i.e.,

mapping the architectural registers to physical registers), and

register renaming (to eliminate false dependencies among

µops). On some microarchitectures, the reorder buffer can

also directly execute certain special µops, including NOPs,

zero idioms (e.g., an XOR of a register with itself), and

register-to-register moves (“move elimination”).

The remaining µops are then forwarded to the scheduler

(also known as the reservation station), which queues the

µops until all their source operands are ready. Once the

operands of a µop are ready, it is dispatched through an ex-

ecution port. Due to out-of-order execution, µops are not nec-

essarily dispatched in program order. Each port (Intel Core

microarchitectures have 6 or 8 of them) is connected to a

set of different functional units, such as an ALU, an address-

generation unit (AGU), or a unit for vector multiplications.

Each port can accept at most one µop in every cycle. How-

ever, as most functional units are fully pipelined, a port can

typically accept a new µop in every cycle, even though the

corresponding functional unit might not have finished execut-

ing a previous µop. An exception to this are the divider units,

which are not fully pipelined.

3.2. Assembler Instructions

Throughout this paper, we will user assembler instructions in

Intel syntax. They have the following form:

mnemonic op1, op2, ...

The mnemonic identifies the operation, e.g., ADD or XOR. The

first operand op1 is typically the destination operand, and

the other operands are the source operands (an operand can

also be both a source and destination operand). Operands

can be registers, memory locations, or immediates. Memory

operands use the syntax [Rbase+Rindex*scale+disp], where

Rbase and Rindex are general-purpose registers, disp is an in-

teger, and scale is 1, 2, 4, or 8. All of these components

are optional and can be omitted. In addition to these explicit

operands, an instruction can also have implicit operands.

As an example, consider the following instruction:

ADD RAX, [RBX]

This instruction computes the sum of the general-purpose reg-

ister RAX and the memory at the address of register RBX, and

stores the result in RAX. We refer to RAX and [RBX] as explicit

operands. In addition to that, the instruction updates the sta-

tus flags (e.g., the carry flag) according to the result. The

status flags are implicit operands of the ADD instruction.

There are often multiple variants of an instruction with dif-

ferent operand types and/or widths.

Note that there is not always a one-to-one correspondence

between assembler code and machine code. Sometimes, there

are multiple possible encodings for the same assembler in-

struction. It is, in general, not possible to control which of

these encodings the assembler selects. Thus, some machine

instructions cannot be generated using assembler code.

3.3. Hardware Performance Counters

Hardware performance counters are special registers that

store the count of various hardware-related events. All recent

Intel processors have counters for the number elapsed core

cycles, and for the number of µops that are executed on each

port.

4. Definitions

In this section, we define the microarchitectural properties we

want to infer, i.e., latency, throughput, and port usage.

4.1. Latency

The latency of an instruction is commonly [23] defined as the

“number of clock cycles that are required for the execution

core to complete the execution of all of the µops that form

an instruction” (assuming that there are no other instructions

that compete for execution resources). Thus, it denotes the

time from when the operands of the instruction are ready and

the instruction can begin execution to when the results of the

instruction are ready.

This definition ignores the fact that different operands of

an instruction may be read and/or written by different µops.

3

Thus, a µop of an instruction I might already begin execu-

tion before all source operands of I are ready, and a sub-

sequent instruction I′ that depends on some (but not all re-

sults) of I might begin execution before all results of I have

been produced. To take this into account, we propose the fol-

lowing definition for latency instead. Let S = {s1, ...,sm} be

the source operands, and D = {d1, ...,dm} be the destination

operands of an instruction. We define the latency of the in-

struction to be the mapping lat : S×D→N such that lat(si,d j)
denotes the time from when source operand si becomes ready

until the result d j is ready (assuming all other dependencies

are not on the critical path). Thus, if tsi
denotes the time

at which source operand si becomes ready, then destination

operand d j is ready at time

td j
= max{tsi

+ lat(si,d j) | si ∈ S}.

With the usual approach of using a single value lat as the

latency of an instruction, this value would be

td j
= max{tsi

| si ∈ S}+ lat,

which might be significantly greater than what would be ob-

served in practice.

4.2. Throughput

When comparing throughput data from different publications,

it is important to note that these publications do not all use

the same definition of throughput. Intel defines throughput in

its manuals [22, 23] as follows:

Definition 1 (Throughput - Intel) The number of clock cy-

cles required to wait before the issue ports are free to accept

the same instruction again.

On the other hand, Agner Fog [14] uses the following defi-

nition for (reciprocal) throughput:

Definition 2 (Throughput - Fog) The average number of

core clock cycles per instruction for a series of independent

instructions of the same kind in the same thread.

Granlund [17] uses a similar definition as Fog.

These two definitions are not equivalent, as there can be

factors other than contention for the issue ports that may re-

duce the rate at which instructions can be executed (e.g., the

front end, or the memory subsystem). Moreover, it is not al-

ways possible to find instructions of the same kind that are

truly independent, as many instructions have implicit depen-

dencies on certain registers or flags. Hence, the second defi-

nition may yield higher throughput values (corresponding to

a lower throughput) than the first definition for the same in-

struction.

Some publications (e.g., [14, 17]) use the term throughput

to denote instructions per cycle, while others (e.g., [20, 22,

23]) use it to denote cycles per instruction. In this paper, we

will use the term with the latter meaning.

4.3. Port Usage

Let P be the set of ports of a CPU, and U the set of µops of an

instruction instr. Let ports : U → 2P be a mapping such that

ports(u) is the set of ports which have a functional unit that

can execute the µop u.

We define the port usage pu : 2P → N of instr to be a

mapping such that pu(pc) =
∣

∣{u ∈U | ports(u) = pc}
∣

∣, i.e.,

pu(pc) denotes the number of µops of instr whose functional

units are at the ports in pc (we will call the set pc a port com-

bination). Note that, e.g., for a 1-µop instruction with a µop u

such that ports(u) = {0,1}, we have that pu({0,1}) = 1, but

pu({0}) = pu({1}) = 0.

For, e.g., an instruction with pu({0,1,5}) = 3,

pu({2,3}) = 1, and pu(pc) = 0 for all other port com-

binations pc, we will use the notation 3 ∗ p015+ 1 ∗ p23 to

denote the port usage. In other words, the instruction consists

of three µops that may each be executed on ports 0, 1, and 5,

and one µop that may be executed on ports 2 and 3.

5. Algorithms

In this section, we describe the algorithms that we developed

to infer the port usage, the latency, and the throughput.

5.1. Port Usage

The existing approach by Agner Fog [14] to determine the

port usage measures the number of µops on each port when

executing the instruction repeatedly in isolation. If the result

of such a measurement is, e.g., that there is, on average, one

µop on port 0, and one µop on port 5, the author would con-

clude that the port usage is 1 ∗ p0+ 1 ∗ p5.

However, this might be incorrect: A port usage of 2 ∗ p05

could lead to exactly the same measurement result when the

instruction is run in isolation, but to a very different result

when run together with an instruction that can only use port 0

(the PBLENDVB instruction on the Nehalem microarchitecture

is an example for such a case).

In another example, if the measurement result is that there

are, on average, 0.5 µops on each of port 0, 1, 5, and 6, the au-

thor would conclude that the port usage is 2∗ p0156, whereas

the actual usage might be 1 ∗ p0156+ 1 ∗ p06 (this is, e.g.,

the case for the ADC instruction on the Haswell microarchitec-

ture).

In this section, we propose an algorithm that can automati-

cally infer an accurate model of the port usage. Our algorithm

is based on the notion of a blocking instruction: We define a

blocking instruction for a set of ports P to be an instruction

whose µops can use all the ports in P, but no other port that

has the same functional unit as a port in P. In the following,

we will call the set P a port combination. Blocking instruc-

tions are interesting because they can be used to determine

whether or not an instruction can only be executed on a given

set of ports, the set of ports blocked by the blocking instruc-

tion.

4

Before describing our algorithm to infer a model of the port

usage we will now first describe how to find a suitable set of

blocking instructions.

5.1.1. Finding Blocking Instructions Let FU be the set of

types of functional units that the CPU uses, and let ports :

FU → 2P be a mapping from the functional unit types to the

set of ports P that are connected to a functional unit of the

given type. The set of port combinations for which we need

to find blocking instructions is the set {ports(f u) | f u∈ FU}.
We assume that for each of these port combinations (except

for the ports that are connected to the store data and store

address units), there is a 1-µop instruction that can use exactly

the ports in the combination. This assumption holds on all

recent Intel microarchitectures.

Our algorithm first groups all 1-µop instructions based on

the ports they use when run in isolation. We exclude sys-

tem instructions, serializing instructions, zero-latency instruc-

tions, the PAUSE instruction, and instructions that can change

the control flow based on the value of a register. From the re-

maining instructions, the algorithm chooses from each group

an instruction with the highest throughput (see Section 5.3) as

the blocking instruction for the port combination correspond-

ing to this group.

As blocking instructions for the port combinations for the

ports that are connected to the store data and store address

units, we use the MOV instruction (from a general-purpose reg-

ister to the memory). This instruction is a 2-µop instruction;

one of its µops uses the store data unit, and the other a store

address unit.

To avoid SSE-AVX transition penalties when characteriz-

ing SSE or AVX instructions, our algorithm determines two

separate sets of blocking instructions for these two types of

instructions. For SSE instructions, the blocking instructions

should not contain AVX instructions, and vice versa.

Algorithm 1: Port Usage

1 portCombinationsList← sort(portCombinations)

2 µopsForCombination← [] //list of pairs

3 foreach pc in portCombinationsList do

4 blockRep← 8 ·maxLatency(instr)

5 code← copy(blockingInstr(pc), blockRep); instr

6 µops← measureUopsOnPorts(code, pc)

7 µops← µops− blockRep

8 foreach (pc′,µops′) in µopsForCombination do

9 if pc′ ⊂ pc then

10 µops← µops− µops′

11 if µops > 0 then

12 µopsForCombination.add((pc,µops))

13 return µopsForCombination

5.1.2. Port Usage Algorithm We use Algorithm 1 to infer

the port usage of an instruction instr.

The algorithm first sorts the set of port combinations by the

size of its elements. This ensures that, when iterating over the

port combinations, combinations that are a subset of another

port combination are processed first.

For each port combination pc, the algorithm determines

the number of µops that may use all of the ports in pc

but no others. To determine this set, the algorithm con-

catenates blockRep copies of the corresponding blocking

instruction with the instruction that we want to analyze

(line 5). blockRep is the product of the maximum latency

of the instruction (see Section 5.2), i.e., the maximum over

the latencies for all input/output pairs, and the maximum

number of ports. This ensures that there is always a sufficient

number of instructions available that can block the ports of

the combination. The operands of the copies of the blocking

instructions are chosen such that they are independent from

the operands of instr, and independent from subsequent

instances of the blocking instruction.

Executing the concatenation, instruction instr will only be

executed on one of the blocked ports if there is no other port

that it can be executed on. The algorithm thus measures the

number of µops that use the ports in the combination when

executing the code of the concatenation (line 6). From this

value, it subtracts the number of µops, blockRep, of the block-

ing instructions (line 7). The remaining number of µops can

only be executed on the ports in pc, otherwise they would

have been executed on other ports.

However, it may have been determined previously for a

strict subset pc′ of pc that some or even all of these µops

can only be executed on that subset pc′. Thus, the number of

µops′ on subsets pc′ of the port combination pc, which have

been determined in previous iterations of the loop, are sub-

tracted from µops (line 10). The remaining number of µops

can be executed on all ports in pc but on no other ports.

The algorithm can be optimized by first measuring which

ports are used when running the instruction in isolation. The

loop then does not need to iterate over all port combinations,

but only over those whose ports are also used when the in-

struction is run in isolation. Furthermore, we can exit the loop

early when the sum of the µops in the µopsForCombination

list reaches the total number of µops of the instruction.

5.2. Latency

Let I be an instruction with source operands S and destina-

tion operands D. We use the following general approach to

determine the latency lat(s,d) for some s ∈ S and d ∈ D.

Let us first consider the simplest possible case:

1. The type of the source operand s is the same as the type

of the destination operand d.

2. All instruction operands are explicit register operands,

and no register operand is both read from and written to

by I.

Then we can create a dependency chain of copies of I, such

that the register for the destination operand of an instance of I

5

is the register used for the source operand of the next instance

of I. The other registers should be chosen such that no addi-

tional dependencies are introduced. Given such a chain c of

sufficient length, we can determine lat(s,d) by measuring the

run time of the chain and dividing it by the length of c.

Now let us consider the case that the types of the source

operand s and the destination operand d are different. Then it

is impossible to create a dependency chain consisting only of

instances of I. To create a chain we need an instruction C that

has a source operand sC with the same type as d, and a desti-

nation operand dC with the same type as s. We call such an

instruction a chain instruction. Given a chain instruction C,

we can create a chain by concatenating instances of I and C,

such that the destination operand of I uses the same register

as the source operand of C and vice versa. Assuming we al-

ready know the latency latC(sC,dC) of C we can determine

the latency lat(s,d) by measuring the chain’s run time, divid-

ing it by the number of occurrences of I, and by subtracting

latC(sC,dC). Chain instructions should ideally be instructions

that have as few as possible other operands, and their latency

should either be known or easy to determine in isolation.

Now let us assume there are implicit operands or register

operands that are both read from and written to by I. Such

operands are a challenge as they may introduce additional de-

pendencies: This is the case if I has implicit operands that

are both read from and written to (such as, e.g., status flags),

or if s 6= d and s or d are both read from and written to. If

we do not “break” these dependencies, then the run time of a

chain involving I may be determined by the latency of such

an additional dependency, rather than the latency from s to

d, which we would like to determine. We break these addi-

tional dependencies by adding suitable dependency-breaking

instructions. Such instructions overwrite an operand that is

part of an unwanted additional dependency, but do not read

the same operand. This makes sure that the run time of the

chain is not influenced by dependencies other than the one

from s to d.

In the following subsections, we describe the most interest-

ing cases of how we create dependency chains for different

types of source/destination operands.

5.2.1. Register→ Register

Both registers are general-purpose registers If both regis-

ters are general-purpose registers, we use the MOVSX (“Move

with Sign-Extension”) instruction to create a dependency

chain. We do not use the MOV or MOVZX instructions for this

purpose, as these can be zero-latency instructions on some

microarchitectures in some cases, which can be executed by

the reorder buffer (move elimination, see Section 3.1). How-

ever, move elimination is not always successful (in our exper-

iments, we found that in a chain consisting of only (depen-

dent) MOV instruction, about one third of the instructions were

actually eliminated). Using the MOVSX instruction avoids this

uncertainty. Moreover, because the MOVSX instruction sup-

ports source and destination registers of different sizes, this

also avoids problems with partial register stalls (see Section

3.5.2.4 of Intel’s Optimization Manual [23]). A partial regis-

ter stall occurs when an instruction writes an 8 or 16-bit por-

tion of a general-purpose register, and a subsequent instruc-

tion reads a larger part of the register.

If at least one of the two register operands is not an implicit

operand, we can also use the same register for both operands.

However, if one of the operands is both read and written, it

is not possible to add a dependency-breaking instruction for

this implicit dependency. Thus, it would not be possible to

analyze the latency of the two operands in isolation in that

case. Moreover, there are some instructions that behave dif-

ferently if the same register is used for multiple operands. For

example, some instructions with two register operands (like

XOR and SUB) are zero idioms that always set the register to

zero (independent of the actual register content) if the same

register is used for both operands. In all recent microarchitec-

tures, these instructions break the dependency on the register

that is used; on some microarchitectures, they can in some

cases be executed by the reorder buffer, and do not use any

execution ports (see Section 3.5.1.8 of Intel’s Optimization

Manual [23]). There are also other instructions that behave

differently on some microarchitectures when the same regis-

ter is used, for example the SHLD instruction (for details see

Section 7.3.2).

To be able to detect such a behavior, our algorithm there-

fore creates microbenchmarks for both scenarios (i.e., using

a separate chain instruction, and using the same register for

different operands).

A third option would be to chain the instruction with it-

self by reversing the order of the two operands (i.e., the des-

tination operand of one instruction would use the same regis-

ter as the source operand of the next instruction). However,

as this would not work for instructions with implicit register

operands, we do not pursue this alternative.

Both registers are SIMD registers Since all MOV instruc-

tions for SIMD registers (i.e., XMM, YMM, and ZMM regis-

ters) can be zero-latency instructions on some microarchitec-

tures, we use shuffle instructions instead.

SIMD instructions can perform floating-point or integer op-

erations. If a source for a floating-point operation comes from

an integer operation (or vice-versa), a bypass delay can occur

(see Sections 3.5.1.11 and 3.5.2.3 of the Optimization Man-

ual [23]). To capture such cases, we perform measurements

with both a floating-point and an integer shuffle instruction as

chain instructions.

The registers have different types If the registers have dif-

ferent types (e.g., one is a vector register, and the other a

general-purpose register), then it is, in general, not possible

to find a chain instruction whose latency could be determined

in isolation. Instead, we separately measure and report the

execution times for compositions of the instruction with all

6

possible chain instructions with the corresponding types (the

number of such instructions is typically rather small). Note

that these times might be higher than the sum of the laten-

cies of the instruction and the chain instruction due to bypass

delays. If we then take the minimum of these times and sub-

tract 1, we can obtain an upper bound on the latency of the

instruction.

5.2.2. Memory→ Register To measure the latency of a MOV

instruction from the memory to a general-purpose register, we

can use a chain of

MOV RAX, [RAX]

instructions, where we assume that register RAX contains the

address of a memory location that stores its own address. As

its address depends on the result of the previous load, the next

load can only begin after the previous load has completed.

However, this simple approach would not work for most

other instructions, as they usually do not just copy a value

from the memory to a register. Instead, we generalize the

approach as follows: Let Ra be the register that contains the

memory address, and Rd be the destination register. We use

XOR Ra, Rd; XOR Ra, Rd

to create a dependency from Rd to Ra. Note that the dou-

ble XOR effectively leaves Ra unchanged. However, since

XOR also modifies the status flags, we additionally add a

dependency-breaking instruction for the flags to the chain.

Furthermore, if Rd is an 8 or 16-bit register, we prepend a

MOVSX instruction to the chain to avoid partial register stalls.

The base register of a memory operand is always a general-

purpose register. If the destination register of the instruction

is not a general-purpose register, we combine the double XOR

technique with the approach for registers described in the pre-

vious section to obtain an upper bound on the latency.

5.2.3. Status Flags→ Register As there are no instructions

that read a status flag and write a vector register, we only need

to consider general-purpose registers here.

To create a dependency from a general-purpose register R

to a flag, we use the instruction TEST R, R. This instruction

reads both register operands (we use for both operands regis-

ter R), and writes all status flags (except the AF flag). It has

no other dependencies.

5.2.4. Register→Memory It is not directly possible to mea-

sure the latency of a store to memory, i.e., the time until the

data has been written to the L1 cache. We can, however, mea-

sure the execution time of a chain with a load instruction. For

the MOV instruction, we could, e.g., measure the execution

time of the sequence

MOV [RAX], RBX; MOV RBX, [RAX].

However, the execution time of this sequence might be lower

than the sum of the times for a load and for a store. One

reason for this is “store to load forwarding”, i.e., the load ob-

tains the data directly from the store buffer instead of through

the cache. The second reason is that the address of the load

does not depend on the preceding store, and thus the address

computation might already begin before the store.

While the time of such a sequence does not directly corre-

spond to the latency, it still might provide valuable insights.

We therefore measure the execution time in a chain with a

suitable load instruction for all instructions that read a regis-

ter, and store data to the memory.

5.2.5. Divisions For instructions that use the divider units, it

is known that their latency depends on the content of their

register (and memory, where applicable) operands. We test

these instructions both with values that lead to high latency,

and with values that lead to a low latency (we obtained those

values from Agner Fog’s [14] test scripts). As most of these

instructions use one operand both as input and output operand,

and the output of a division with a value that leads to a high

latency is often a value that leads to a lower latency, the tech-

niques described in the previous sections for automatically

creating dependency chains cannot be used in this case. We

therefore handle these instructions separately. If, e.g., R is a

register that is both a source and a destination register, and Rc

contains a value that leads to a high latency, we can use

AND R, Rc; OR R, Rc,

or the corresponding vector instructions, to create a depen-

dency chain that always sets R to the same value.

5.3. Throughput

As mentioned in Section 4.2, there are different ways of defin-

ing throughput. We will now first describe how we can mea-

sure the throughput according to Definition 2. Then, we will

show how the throughput according to Definition 1 can be

computed from the port usage.

5.3.1. Measuring Throughput To measure the throughput

of an instruction, we first try to find a sequence of indepen-

dent instances of the instruction that avoids read-after-write

dependencies as much as possible. To this end, we select reg-

isters and memory locations in a way such that they are not

written by one instruction of the sequence and read by a sub-

sequent instruction. This is, however, not possible for implicit

operands that are both read and written.

We then measure the execution time over several repeti-

tions of this sequence, and obtain the throughput by dividing

this time by the total number of instruction that have been

executed.

We observed that sometimes longer sequences of indepen-

dent instruction instances can lead to higher execution times

per instruction than shorter sequences, in particular, when

they use many different memory locations or registers. We

therefore perform measurements for sequences of different

lengths (we consider sequences with 1, 2, 4, and 8 elements).

7

For instructions with implicit operands that are both

read and written, we additionally consider sequences

with dependency-breaking instructions. However, as the

dependency-breaking instructions also consume execution re-

sources, this does not necessarily lead to a lower execution

time of the sequence in all cases.

For instructions that use the divider units, the throughput

can depend on the value of their operands. We test these in-

structions both with values that lead to a high throughput, and

with values that lead to a low throughput. For this, we use the

same values that we used to measure the latency of such in-

structions.

5.3.2. Computing Throughput from Port Usage Intel’s def-

inition of throughput (Definition 1) assumes that the ports are

the only resource that limits the number of instructions that

can be executed per cycle, and that there are no implicit de-

pendencies.

If we execute an instruction, for which these requirements

hold, repeatedly, then the average wait time until the next in-

struction can be executed corresponds to the average usage

(per instruction) of the port with the highest usage, and the

number of µops on this port will be equal to the execution

time (however, this is not true for instructions that use the

divider unit, which is not fully pipelined).

For instructions, for which the above requirements do not

hold, it is not possible to directly measure the throughput ac-

cording to Intel’s definition.

However, for instructions that do not use the divider unit,

it can be computed from the port usage measured in Sec-

tion 5.1. For 1-µop instructions, the throughput is 1
|P| , where P

is the set of ports that the µop can use. More generally, the

throughput is the solution of the following optimization prob-

lem, where PU is the result from Algorithm 1, and f (p, pc)
are variables:

Minimize max
p∈Ports

∑
(pc,µ)∈PU

f (p, pc)

Subject to f (p, pc) = 0 p /∈ pc

∑
p∈Ports

f (p, pc) = µ (pc,µ) ∈ PU

The variable f (p, pc) captures the share of the µops that map

to the port combination pc that are scheduled on port p. A

schedule maximizing the throughput will minimize the maxi-

mum port load maxp∈Ports ∑(pc,µ)∈PU f (p, pc).
We can reduce this optimization problem to a linear pro-

gram by replacing the maximum in the objective with a new

variable z, and adding constraints of the form

∑
(pc,µ)∈PU

f (p, pc)≤ z

for all p ∈ Ports. The linear program can be solved using

standard LP solvers.

6. Implementation

In this section, we describe various aspects of our implemen-

tation of the algorithms developed in Section 5.

6.1. Details of the x86 Instruction Set

The algorithms described in Section 5 require detailed infor-

mation on the x86 instruction set, including, e.g., the types

and widths of (implicit and explicit) operands. While this in-

formation is available in Intel’s Software Developer’s Man-

ual [24], there was, until recently, no sufficiently precise

machine-readable description of the instruction set.

Fortunately, Intel recently published the source code of

their x86 Encoder Decoder (XED) [21] library. The build pro-

cess of this library uses a set of configuration files that con-

tain a complete description of the x86 instruction set. While

this description is very concise, it is not well documented, and

quite complex to parse (collecting the information for a single

instruction requires reading multiple files). It also contains a

lot of low-level details, e.g., regarding the encoding, that are

not needed for our purposes.

We therefore convert this format to a simpler XML rep-

resentation that contains enough information for generating

assembler code for each instruction variant, and that also in-

cludes information on implicit operands.

6.2. Measurements on the Hardware

To measure the number of µops on each port when executing

a code sequence, we use hardware performance counters [24].

For measuring the execution time, we also use a performance

counter, as this makes it possible to count core clock cycles,

whereas other means to measure the execution time (e.g., us-

ing the RDTSC instruction), count reference cycles (which can

be different from core clock cycles due to, e.g., frequency

scaling).

Before the performance counters can be used, they need

to be configured to count the events of interest by writing to

a model-specific register. This requires using privileged in-

structions. While it would be possible to read the counters

in user mode afterwards, we also perform the measurements

in kernel space, as this allows us to also test system instruc-

tions. Moreover, it also allows us to disable preemption and

interrupts during the measurements.

To perform one measurement, we generate the following

code, where AsmCode consists of n (as explained below)

copies of the assembler code sequence we want to analyze.

The routine saveState() in line 1 saves the content of all reg-

isters and flags to the memory, and sets the stack pointer and

the base pointer to valid addresses in a large enough memory

area that is not used by the main program; this way, the code

in line 6 can freely modify registers or the stack without cor-

rupting the main program. We reserve two registers, however,

that store the addresses of the saved state and of the initial

8

Algorithm 2: Measurement

1 saveState()

2 disablePreemptionAndInterrupts()

3 serializingInstruction

4 start← readPerfCtrs()

5 serializingInstruction

6 AsmCode

7 serializingInstruction

8 end← readPerfCtrs()

9 serializingInstruction

10 enablePreemptionAndInterrupts()

11 restoreState()

12 return end− start

performance counter data; the code in line 6 is not allowed to

use these two registers.

We wrap the instructions that read the performance coun-

ters (in line 4 and 8) with serializing instructions because oth-

erwise, they could be reordered with the preceding or suc-

ceeding code.

The algorithm returns the difference between the two per-

formance counter read operations. However, this value in-

cludes the execution time (or the µop counts, respectively)

of the serializing instructions and (partly) the instructions to

read the performance counters, which is undesirable. We

therefore run this algorithm twice. The first time, we use

n = 10 copies of the assembler code we want to analyze, and

the second time, we use n = 110 copies. By taking the differ-

ence of these two measurements, and dividing the result by

100, we obtain the average run time for one execution of the

assembler code sequence we want to analyze.

We then repeat all these steps 100 times (after a separate

“warm-up run” to fill the caches), and finally return the av-

erage of the results to minimize the impact of measurement

errors.

The values for n were chosen such that the code is small

enough to fit in the instruction cache, but large enough to al-

low for accurate results.

6.3. Analysis Using Intel IACA

In addition to running the code sequences generated by our

algorithms on the actual hardware, we also implemented a

variant of our tool that automatically analyzes them with Intel

IACA. IACA treats the code sequences as the body of a loop,

and reports average throughput and port usage values for mul-

tiple iterations of this loop. Thus, the results should corre-

spond to the measurements on the actual hardware, which

are also averages over executing the code sequences multiple

times.

We consider the IACA versions 2.1, 2.2, 2.3, and 3.0. In-

tel added support for more recent microarchitectures in the

newer versions, but at the same time dropped support for

older ones. For microarchitectures that are supported by

Table 1: Tested microarchitectures, number of instruction vari-

ants, and comparison with IACA

Architecture Processor # Instr. IACA µops Ports

Nehalem Core i5-750 1836 2.1–2.2 91.43% 95.27%

Westmere Core i5-650 1848 2.1–2.2 91.36% 94.61%

Sandy Bridge Core i7-2600 2538 2.1–2.3 93.25% 98.24%

Ivy Bridge Core i5-3470 2549 2.1–2.3 91.36% 97.39%

Haswell Xeon E3-1225 v3 3107 2.1–3.0 93.10% 96.45%

Broadwell Core i5-5200U 3118 2.2–3.0 92.83% 92.64%

Skylake Core i7-6500U 3119 2.3–3.0 92.29% 91.04%

Kaby Lake Core i7-7700 3119 - - -

Coffee Lake Core i7-8700K 3119 - - -

multiple versions, we analyze the code sequences by all of

these versions, as we observed (undocumented) differences

between the result from different versions of IACA for the

same instructions.

6.4. Machine-readable Output

We store the results of our algorithms in a machine-readable

XML file. The file contains the results for all tested microar-

chitectures, both as measured on the actual hardware, and as

obtained from running our microbenchmarks on top of IACA.

7. Evaluation

In this section, we first describe the platforms on which we

ran our tool.

Then, we compare the results we obtained for the port

usage by running our microbenchmarks on the actual hard-

ware and by analyzing them with Intel IACA. We consider a

high level of agreement between the two results as evidence

that results obtained using performance counter based mea-

surements on microarchitectures which are not supported by

IACA are likely also accurate.

Finally, we present several insights that we obtained from

the measurement results.

7.1. Experimental Setup

We ran our tool on the platforms shown in Table 1, which

includes one processor from each generation of the Intel

Core microarchitecture. The machines have between 4 and

16 GB of RAM. All experiments were performed using

Ubuntu 16.04. On the Westmere machine, we disabled hyper-

threading, as otherwise, the performance counters did not re-

port correct results.

The third column shows the number of instruction variants

for which we obtained results. The numbers are higher for

newer microarchitectures due to their larger instruction sets.

The total run time of our tool ranges from 50 minutes, on

the Coffee Lake system, to 110 minutes, on the Broadwell

system.

9

7.2. Hardware Measurements vs. Analysis with IACA

For the microarchitectures from Table 1 that are also sup-

ported by IACA, IACA reports the same µop count for be-

tween 84.65% (Westmere) and 90.06% (Broadwell) of the in-

struction variants that are supported by both tools (we assume

that IACA reports the same count if at least one IACA version

reports this count; the fourth column in the table shows the

IACA versions that support each microarchitecture).

If we ignore instruction variants with a REP prefix (which

can have a variable number of µops), and instructions with

a LOCK prefix (for which IACA in most cases reports a µop

count that is different from our measurements), then the µop

counts are the same for the percentages in the fifth column

of Table 1.

If we consider only the instruction variants for which IACA

and our tool report the same µop count, then in between

91.04% and 98.24% of the cases, the port usage as obtained

from measurements on the hardware, and as obtained from

running our microbenchmarks on top of IACA, is also the

same. The percentages for each microarchitecture are shown

in the last column of Table 1.

Differences Between Hardware Measurements and IACA

While some of the discrepancies might be due to measure-

ment errors on the hardware, in many cases we were able to

conclude that the output of IACA was incorrect.

There are, for instance, several instructions that read from

memory, but that do not have a µop that can use a port with

a load unit (e.g., the IMUL instruction on Nehalem). On the

other hand, there are instructions (like the TEST mem, R

instruction on Nehalem), that have a store data and a store

address µop in IACA, even though they do not write to the

memory.

We also found several cases where IACA is not aware that

different variants of an instruction have a different port usage.

On the actual hardware, the 32-bit variant of the BSWAP in-

struction on Skylake, for example, has just one µop, whereas

the 64-bit variant has two µops. In IACA, both variants have

two µops.

In a number of cases, the sum of the µops on each of the

ports does not add up to the total number of µops reported

by IACA. An example for this is the VHADDPD instruction on

Skylake. According to our measurements on the hardware,

the port usage of this instruction is 1∗ p01+2∗ p5. IACA also

reports that the instruction has three µops in total. However,

the detailed (per port) view only shows one µop.

Differences Between Different IACA Versions We found

a number of cases where different IACA versions reported

different port usages for the same instructions on the same

microarchitecture. Often, the results from the newer versions

correspond to our measurements on the hardware, so in these

cases, the differences seem to be due to fixes of (undocu-

mented) bugs in earlier versions of IACA. One example for

this is the VMINPS instruction on the Skylake microarchitec-

ture. In IACA 2.3, this instruction can use the ports 0, 1, and

5, whereas in IACA 3.0 and on the actual hardware, the in-

struction can only use ports 0 and 1.

On the other hand, we also found a few cases where the

results of an older version of IACA correspond to the mea-

surements on the hardware. An example for this is the SAHF

instruction on the Haswell microarchitecture. On the actual

hardware and in IACA 2.1, this instruction can use the ports

0 and 6. In IACA 2.2, 2.3, and 3.0, however, the instruction

can additionally use the ports 1 and 5.

Latency/Throughput In many cases, it was not possible to

obtain accurate latency and throughput data from IACA. One

reason for this is that IACA ignores several dependencies

between instructions. IACA 3.0, for instance, ignores de-

pendencies on status flags; the CMC instruction, for example,

which complements the carry flag, is reported to have a

throughput of 0.25 cycles by IACA, which is impossible in

practice due to the dependency on the carry flag (on the actual

hardware, we measured a throughput of 1 cycle). IACA

also completely ignores memory dependencies; the sequence

mov [RAX], RBX; mov RBX, [RAX] is reported to have

a throughput of 1 cycle. Furthermore, based on our obser-

vations, IACA does not seem to model latency differences

between different pairs of input and output operands.

7.3. Interesting Results

7.3.1. AES Instructions We will first look at an example

where our new approach for determining the latencies of an

instruction revealed undocumented performance differences

between successive microarchitectures.

According to Intel’s manual, the AESDEC XMM1, XMM2

instruction has a latency of 8 cycles on the Sandy Bridge

architecture. Agner Fog and AIDA64 report the same latency.

According to IACA 2.1 and the LLVM model, the latency is

7 cycles.

The instruction reads and writes the first operand, and reads

the second operand. Based on our measurements on the

Sandy Bridge system, the latency lat(XMM1,XMM1) is 8 cy-

cles, while lat(XMM2,XMM1) is only about 1.25 cycles. The

instruction uses 2 µops.

According to Intel’s instruction set reference, the instruc-

tion performs the following operations:

1 STATE ← XMM1

2 RoundKey ← XMM2

3 STATE ← InvShiftRows(STATE)

4 STATE ← InvSubBytes(STATE)

5 STATE ← InvMixColumns(STATE)

6 DEST[127:0] ← STATE XOR RoundKey

We can see that the second operand is only needed in the

last step (line 6). So, our latency measurements suggest that

10

one of the two µops probably computes the XOR operation in

the last step (which has a latency of 1 cycle).

We obtained the same result on the Ivy Bridge system (i.e.,

Sandy Bridge’s successor). On the Haswell system (i.e., Ivy

Bridge’s successor), on the other hand, the instruction has just

one µop, and the measured latency values for both cases are

7 cycles. The same latency is reported in Intel’s manual, by

IACA, by the LLVM model, and by Agner Fog.

On the Westmere microarchitecture (i.e., Sandy Bridge’s

predecessor), which was the first microarchitecture to support

the AES instruction set, the instruction has 3 µops, and we

measured a latency of 6 cycles for both operand pairs. The

same latency is reported in the 2012 version of Intel’s man-

ual [22] (the current version contains no data for Westmere),

by IACA 2.1, and by AIDA64. Agner Fog did not analyze

a Westmere system; there is also no LLVM model for West-

mere.

We observed the same behavior for the AESDECLAST,

AESENC, and AESENCLAST instructions. To the best of our

knowledge, the behavior on Sandy Bridge and Ivy Bridge has

not been documented before.

There are also a variants of these instructions where the

second operand is a memory operand instead of a register

operand. For these variants, our tool reports for the Sandy

Bridge system a latency of 8 cycles for the register-to-register

dependency (as before), and an upper bound on the memory-

to-register latency of 7 cycles. According to IACA 2.1 and the

LLVM model, the latency is 13 cycles (this value was prob-

ably obtained by just adding the load latency to the latency

of the register-to-register variants of these instructions). Ag-

ner Fog and AIDA64 do not report the latency of the memory

variants.

7.3.2. SHLD We will now see an example that shows that our

approach can explain differences among previously published

data for the same instruction on the same microarchitecture.

According to the manual [22], as well as IACA, Granlund,

and AIDA64, the SHLD R1, R2, imm instruction (“double

precision shift left”) has a latency of 4 cycles on the Nehalem

microarchitecture. Agner Fog reports a latency of 3 cycles.

The instruction reads and writes the first operand, and

reads the second operand. According to our measurements,

lat(R1,R1) is 3 cycles, while lat(R2,R1) is 4 cycles. So

lat(R1,R1) corresponds to Fog’s result, while lat(R2,R1) cor-

responds to the latency the other approaches report.

On the Skylake microarchitecture, the same instruction is

reported to have a latency of 3 cycles by the manual [23], by

the LLVM model, and by Agner Fog. According to Granlund

and AIDA64, the latency is 1 cycle.

According to our results for the Skylake system, the latency

is 3 cycles if different registers are used for the two operands,

but only 1 cycle if the same register is used for both operands

(the Nehalem system does not exhibit this behavior).

This suggests that Granlund and AIDA64 test the latency

by using the same register for both operands, while Fog uses

different registers for both operands, and thus considers only

the implicit dependency on the first operand.

7.3.3. MOVQ2DQ Next, we will show an example where the

port usage is modeled inaccurately by existing work.

According to Agner Fog’s instruction tables, the MOVQ2DQ

instruction is decoded into 2 µops on Skylake, one of which

uses port 0, while the other can use port 1 and port 5. This

is probably based on the observation that if you execute the

instruction repeatedly on its own, then, on average, there is

1 µop on port 0, and about 0.5 µops on port 1 and 0.5 µops on

port 5.

However, our approach shows that the second µop can actu-

ally use port 0, port 1, and port 5. If we execute the instruction

together with a blocking instruction for port 1 and port 5,

then all µops of the MOVQ2DQ instruction will use port 0.

According to IACA and to the LLVM model, both µops of

this instruction can only use port 5.

7.3.4. MOVDQ2Q The following example shows a case

where existing work reports an inaccurate port usage on one

microarchitecture, and an imprecise usage on another mi-

croarchitecture for the same instruction.

On Haswell, the MOVDQ2Q has, according to our results, one

µop on port 5, and one µop that can use port 0, 1, and 5.

IACA 2.1 reports the same result. However, according to

IACA 2.2, 2.3, 3.0, and the LLVM model, the port usage is

1 ∗ p01+ 1 ∗ p015. According to Agner Fog, the usage is

1 ∗ p01+ 1 ∗ p5.

On Sandy Bridge, our measurements agree with both IACA

and the LLVM model for the same instruction (1∗ p015+1∗
p5). Agner Fog reports the usage as 2 ∗ p015.

7.3.5. Instruction with Multiple Latencies Apart from

the examples already described, we also found latency dif-

ferences for different pairs of input and output operands

for a number of other instructions. This includes most

instructions that have a memory operand and another in-

put operand, where such differences can be expected.

We also found differences for the non-memory variants

of the following instructions: ADC, CMOV(N)BE, (I)MUL,

PSHUFB, ROL, ROR, SAR, SBB, SHL, SHR, (V)MPSADBW,

VPBLENDV(B/PD/PS), (V)PSLL(D/Q/W), (V)PSRA(D/W),

(V)PSRL(D/Q/W), XADD, and XCHG.

For the (I)MUL, ROL, and ROR instructions, this behavior

is described in [23]; for the ADC, and SBB instruction, the be-

havior has been observed by [17]. For the remaining instruc-

tions, the differences have, to the best of our knowledge, so

far been undocumented.

7.3.6. Zero Idioms According to our results, the

(V)PCMPGT(B/D/Q/W) instructions are also dependency-

breaking idioms, even though they are not in the list of

dependency-breaking idioms in Section 3.5.1.8 of the Opti-

mization Manual [23].

11

8. Limitations

Our tool currently has the following limitations:

• We only support instructions that can be used in 64-bit

mode.

• We do not support the mostly obsolete x87 floating-point

instruction set.

• A number of system instructions are not supported. This

includes, e.g., instructions that write to segment or con-

trol registers, instructions that trigger interrupts, the VT-

x instructions for virtual machines, and instructions that

use I/O ports. It also includes instructions like the un-

defined instruction (UD), and the halt instruction (HLT),

which cannot be measured in a meaningful way.

• Except for the division instructions, we do not consider

performance differences that might be due to different

values in registers, or different immediate values. We

do, however, consider immediates of different lengths,

e.g., 16 and 32-bit immediates.

• We do not consider differences due to different memory

addressing modes, e.g., with scale and offset. We only

test instructions that only use the base register.

9. Conclusions and Future Work

We have presented novel algorithms and their implementation

to characterize latency, throughput, and port usage of instruc-

tions on all Intel Core microarchitectures, which we believe

will prove useful to predict, explain, and optimize perfor-

mance of software running on these microarchitectures, e.g.,

in performance-analysis tools like CQA [10], Kerncraft [18],

or llvm-mca [8]. The experimental evaluation demonstrates

that the obtained instruction characterizations are both more

accurate and more precise than those obtained by prior work.

A machine-readable document including all instruction

characterizations is available on our website1.

We have also implemented an open-source performance-

prediction tool similar to Intel’s IACA supporting all Intel

Core microarchitectures, exploiting the results obtained in the

present work.

Future work includes adapting our algorithms to AMD

x86 CPUs. We would also like to extend our approach

to characterize other undocumented performance-relevant as-

pects of the pipeline, e.g., regarding micro and macro-fusion,

or whether instructions use the simple decoder, the complex

decoder, or the Microcode-ROM.

References

[1] “GCC, the GNU compiler collection.” [Online]. Available:
https://gcc.gnu.org/

[2] “x86, x64 instruction latency, memory latency and CPUID dumps.”
[Online]. Available: http://instlatx64.atw.hu/

[3] A. Abel and J. Reineke, “Measurement-based modeling of
the cache replacement policy,” in 19th IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS,

1www.uops.info

Philadelphia, PA, USA, 2013, pp. 65–74. [Online]. Available:
https://doi.org/10.1109/RTAS.2013.6531080

[4] ——, “Reverse engineering of cache replacement policies in intel
microprocessors and their evaluation,” in 2014 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS
2014, Monterey, CA, USA, March 23-25, 2014, 2014, pp. 141–142.
[Online]. Available: https://doi.org/10.1109/ISPASS.2014.6844475

[5] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+:
A manycore simulator with application-level+ simulation and
detailed microarchitecture modeling,” in 2013 IEEE Interna-
tional Symposium on Performance Analysis of Systems & Soft-
ware, Austin, TX, USA, 2013, pp. 74–85. [Online]. Available:
https://doi.org/10.1109/ISPASS.2013.6557148

[6] V. Babka and P. Tůma, “Investigating cache parameters of
x86 family processors,” in Proceedings of the 2009 SPEC
benchmark workshop. Springer, 2009, pp. 77–96. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-93799-9_5

[7] R. Bertran, A. Buyuktosunoglu, M. S. Gupta, M. Gonzalez,
and P. Bose, “Systematic energy characterization of CMP/SMT
processor systems via automated micro-benchmarks,” in Proceed-
ings of the 45th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-45. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 199–211. [Online]. Available:
https://doi.org/10.1109/MICRO.2012.27

[8] A. D. Biagio, “llvm-mca: a static
performance analysis tool.” [Online]. Available:
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html

[9] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill,
and D. A. Wood, “The gem5 simulator,” SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[10] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby,
and G. Lartigue, “CQA: A code quality analyzer tool at binary
level,” in 21st International Conference on High Performance
Computing (HiPC), Dec 2014, pp. 1–10. [Online]. Available:
http://www.maqao.org/publications/papers/CQA.pdf

[11] C. Coleman and J. Davidson, “Automatic memory hierarchy
characterization,” in ISPASS, 2001, pp. 103–110. [Online]. Available:
http://dx.doi.org/10.1109/ISPASS.2001.990684

[12] J. J. Dongarra, S. Moore, P. Mucci, K. Seymour, and H. You, “Ac-
curate cache and TLB characterization using hardware counters,” in
ICCS, 2004, pp. 432–439.

[13] FinalWire Ltd., “AIDA64.” [Online]. Available:
https://www.aida64.com/

[14] A. Fog, Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs,
Technical University of Denmark, May 2017. [Online]. Available:
http://www.agner.org/optimize/instruction_tables.pdf

[15] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K.
John, “System-level max power (SYMPO): A systematic approach
for escalating system-level power consumption using synthetic
benchmarks,” in Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’10.
New York, NY, USA: ACM, 2010, pp. 19–28. [Online]. Available:
http://doi.acm.org/10.1145/1854273.1854282

[16] K. Ganesan and L. K. John, “MAximum Multicore POwer
(MAMPO): An automatic multithreaded synthetic power virus
generation framework for multicore systems,” in Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 53:1–53:12. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063455

[17] T. Granlund, “Instruction latencies and throughput for AMD
and Intel x86 processors,” Apr. 2017. [Online]. Available:
https://gmplib.org/~tege/x86-timing.pdf

[18] J. Hammer, G. Hager, J. Eitzinger, and G. Wellein, “Automatic loop
kernel analysis and performance modeling with Kerncraft,” in Pro-
ceedings of the 6th International Workshop on Performance Modeling,
Benchmarking, and Simulation of High Performance Computing Sys-
tems, ser. PMBS ’15. New York, NY, USA: ACM, 2015, pp. 4:1–4:11.
[Online]. Available: http://doi.acm.org/10.1145/2832087.2832092

[19] M. Hassan, A. M. Kaushik, and H. D. Patel, “Reverse-engineering
embedded memory controllers through latency-based analysis,” in
21st IEEE Real-Time and Embedded Technology and Applications
Symposium, Seattle, WA, USA, 2015, pp. 297–306. [Online].
Available: https://doi.org/10.1109/RTAS.2015.7108453

12

https://gcc.gnu.org/
http://instlatx64.atw.hu/
www.uops.info
https://doi.org/10.1109/RTAS.2013.6531080
https://doi.org/10.1109/ISPASS.2014.6844475
https://doi.org/10.1109/ISPASS.2013.6557148
http://dx.doi.org/10.1007/978-3-540-93799-9_5
https://doi.org/10.1109/MICRO.2012.27
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
http://doi.acm.org/10.1145/2024716.2024718
http://www.maqao.org/publications/papers/CQA.pdf
http://dx.doi.org/10.1109/ISPASS.2001.990684
https://www.aida64.com/
http://www.agner.org/optimize/instruction_tables.pdf
http://doi.acm.org/10.1145/1854273.1854282
http://doi.acm.org/10.1145/2063384.2063455
https://gmplib.org/~tege/x86-timing.pdf
http://doi.acm.org/10.1145/2832087.2832092
https://doi.org/10.1109/RTAS.2015.7108453

[20] Intel Corporation, “Intel architec-
ture code analyzer.” [Online]. Available:
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer

[21] ——, “X86 Encoder Decoder (XED).” [Online]. Available:
https://intelxed.github.io/

[22] Intel 64 and IA-32 Architectures Optimization Refer-
ence Manual, Intel Corporation, Apr. 2012, Or-
der Number: 248966-026. [Online]. Available:
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

[23] Intel 64 and IA-32 Architectures Optimization Refer-
ence Manual, Intel Corporation, Dec. 2017, Or-
der Number: 248966-039. [Online]. Available:
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

[24] Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2, Intel Corporation, Mar.
2018, Order Number: 325383-066US. [Online]. Available:
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf

[25] A. Joshi, L. Eeckhout, L. K. John, and C. Isen, “Automated micropro-
cessor stressmark generation,” in International Symposium on High-
Performance Computer Architecture-Proceedings. IEEE Computer
Society, 2008, pp. 209–219.

[26] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO ’04. Wash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 75–86. [Online].
Available: http://dl.acm.org/citation.cfm?id=977395.977673

[27] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-
level simulator for highly detailed microarchitecture exploration,”
in IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2009, April 26-28, 2009, Boston,
Massachusetts, USA, Proceedings, 2009, pp. 53–64. [Online].
Available: https://doi.org/10.1109/ISPASS.2009.4919638

[28] X. Mei and X. Chu, “Dissecting GPU memory hierar-
chy through microbenchmarking,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 1, pp. 72–86, 2017. [Online]. Available:
https://doi.org/10.1109/TPDS.2016.2549523

[29] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller, “Memory
performance and cache coherency effects on an Intel Nehalem
multiprocessor system,” in Proceedings of the 2009 18th International
Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ’09. Washington, DC, USA: IEEE, 2009, pp. 261–270.
[Online]. Available: http://dx.doi.org/10.1109/PACT.2009.22

[30] R. H. Saavedra and A. J. Smith, “Measuring cache and TLB
performance and their effect on benchmark runtimes,” IEEE Trans.
Computers, vol. 44, no. 10, pp. 1223–1235, 1995. [Online]. Available:
https://doi.org/10.1109/12.467697

[31] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems,” in Proceedings of
the 40th Annual International Symposium on Computer Architecture,
ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 475–486.
[Online]. Available: http://doi.acm.org/10.1145/2485922.2485963

[32] C. Thomborson and Y. Yu, “Measuring data cache and TLB
parameters under Linux,” in Proceedings of the Symposium
on Performance Evaluation of Computer and Telecommuni-
cation Systems, Jul. 2000, pp. 383–390. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.1427

[33] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture through
microbenchmarking,” in ISPASS, 2010, pp. 235–246. [Online].
Available: http://dx.doi.org/10.1109/ISPASS.2010.5452013

[34] K. Yotov, S. Jackson, T. Steele, K. Pingali, and P. Stodghill, “Au-
tomatic measurement of instruction cache capacity,” in Proceedings
of the 18th international workshop on Languages and Compilers
for Parallel Computing. Springer, 2006, pp. 230–243. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-69330-7_16

[35] K. Yotov, K. Pingali, and P. Stodghill, “Automatic measure-
ment of memory hierarchy parameters,” in SIGMETRICS. New
York, NY, USA: ACM, 2005, pp. 181–192. [Online]. Available:

http://doi.acm.org/10.1145/1064212.1064233

13

https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://intelxed.github.io/
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/ISPASS.2009.4919638
https://doi.org/10.1109/TPDS.2016.2549523
http://dx.doi.org/10.1109/PACT.2009.22
https://doi.org/10.1109/12.467697
http://doi.acm.org/10.1145/2485922.2485963
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.1427
http://dx.doi.org/10.1109/ISPASS.2010.5452013
http://dx.doi.org/10.1007/978-3-540-69330-7_16
http://doi.acm.org/10.1145/1064212.1064233

	1 Introduction
	2 Related Work
	2.1 Information provided by Intel
	2.2 Measurement-based Approaches

	3 Background
	3.1 Pipeline of Intel Core CPUs
	3.2 Assembler Instructions
	3.3 Hardware Performance Counters

	4 Definitions
	4.1 Latency
	4.2 Throughput
	4.3 Port Usage

	5 Algorithms
	5.1 Port Usage
	5.1.1 Finding Blocking Instructions
	5.1.2 Port Usage Algorithm

	5.2 Latency
	5.2.1 Register Register
	5.2.2 Memory Register
	5.2.3 Status Flags Register
	5.2.4 Register Memory
	5.2.5 Divisions

	5.3 Throughput
	5.3.1 Measuring Throughput
	5.3.2 Computing Throughput from Port Usage

	6 Implementation
	6.1 Details of the x86 Instruction Set
	6.2 Measurements on the Hardware
	6.3 Analysis Using Intel IACA
	6.4 Machine-readable Output

	7 Evaluation
	7.1 Experimental Setup
	7.2 Hardware Measurements vs. Analysis with IACA
	7.3 Interesting Results
	7.3.1 AES Instructions
	7.3.2 SHLD
	7.3.3 MOVQ2DQ
	7.3.4 MOVDQ2Q
	7.3.5 Instruction with Multiple Latencies
	7.3.6 Zero Idioms

	8 Limitations
	9 Conclusions and Future Work

